Periodic cyclic homology of certain nuclear
نویسنده
چکیده
Relying on properties of the inductive tensor product, we construct cyclic type homology theories for certain nuclear algebras. In this context, we establish continuity theorems. We compute the periodic cyclic homology of the Schwartz algebra of p-adic GL(n) in terms of compactly supported de Rham cohomology of the tempered dual of GL(n). 1. Complete nuclear locally convex algebras Cyclic type homology groups of an algebra A are computed using chain complexes involving tensor powers of A. When A is a general locally convex algebra, this will involve making a choice of a topological tensor product. A locally convex algebra is a locally convex vector space A over C equipped with a separately continuous multiplication. We shall refer to the projective tensor product , the injective tensor product , and the inductive tensor product i .
منابع مشابه
Excision in Hochschild and Cyclic Homology without Continuous Linear Sections
We generalise the known excision results for Hochschild, cyclic and periodic cyclic homology to algebras in symmetric monoidal categories. Our abstract result also contains excision for extensions of nuclear H-unital Fréchet algebras. As an application, we compute the Hochschild and cyclic homology of the algebra of Whitney functions on an arbitrary closed subset of a smooth manifold, and the p...
متن کاملThe K0nneth Formula in Periodic Cyclic Homology
Abstract. In this paper, we introduce a Z-graded variant of the periodic cyclic homology of associative algebras which generalizes the infinitesimal cohomology of affine algebras in characteristic 0 and show that it satisfies the K0nneth formula (i.e. it commutes with the formation of tensor products). We also show that the Kllnneth formula in periodic cyclic homology holds only under the prese...
متن کاملThe Cyclic Homology and K-theory of Certain Adelic Crossed Products
The multiplicative group of a global field acts on its adele ring by multiplication. We consider the crossed product algebra of the resulting action on the space of Schwartz functions on the adele ring and compute its Hochschild, cyclic and periodic cyclic homology. We also compute the topological K-theory of the C-algebra crossed product.
متن کاملOn the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
متن کاملPeriodic Cyclic Homology of Iwahori-hecke Algebras
We determine the periodic cyclic homology of the Iwahori-Hecke algebras Hq, for q ∈ C∗ not a “proper root of unity.” (In this paper, by a proper root of unity we shall mean a root of unity other than 1.) Our method is based on a general result on periodic cyclic homology, which states that a “weakly spectrum preserving” morphism of finite type algebras induces an isomorphism in periodic cyclic ...
متن کامل